Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%207%20%20

Найдено совпадений - 26 за 1.00 сек.


РП 1. ТХ Производственно складской корпус | AutoCad

Помещения и зоны здания производственно-складского комплекса – 1 (ПСК-1) спроектированы с учетом выполнения следующих логистических операций по отношению к товару:
- прием с производства и временное хранение;
- складирование и основное хранение;
- внутрискладская транспортировка;
- комплектация – отбор с мест хранения, паллетная и по коробочная комплектация заказов, маркировка;
- отгрузка.
В состав здания входят:
А) Основные зоны:
1. зона приемки и временного хранения готовой продукции с производства;
2. зона основного складирования (высотное хранение);
3. зона комплектации заказов в составе зоны основного складирования;
4. зона экспедиции (зона временного хранения и зона консолидации партий грузов) для отгрузки автомобильным и железнодорожным транспортом;
5. зона погрузки готовых к отгрузки партий грузов на автомобильный транспорт;
6. зона погрузки готовых к отгрузки партий грузов на железнодорожный транспорт.
7. зона комплектации на антресоли.

Наименование показателей

Ед. изм.

Значение

1. Грузооборот годовой

т

31500

2. Запас хранения

дней

30.00

3. Емкость склада

т

17366

4. Площадь склада

м

7 500.00

5. Количество подъемно-транспортного оборудования

шт

22.00

6. Количество работающих, всего:

чел.

189.00

в том числе:

 

 

Управление (ИТР)

чел.

9.00

Офисный персонал

чел.

31.00

Младший обслуживающий персонал

чел.

21.00

Производственные и складские служащие

чел.

128.00

1. Выработка на одного работающего

т/год

166.67

2. Выработка на одного складского рабочего

т/год

246.09

3. Уровень механизации

%

94.4

 
Дата добавления: 28.05.2011
КП 2. Курсовая работа - Определение основных параметров функционального узла скрепера | Компас

Введение
1 Назначение и область применения скрепера
2 Определение основных параметров скрепера
3 Результаты патентных исследований
4 Построение тяговой характеристики
4.1 Построение регуляторной характеристики
4.2 Построение тяговой характеристики
Заключение
Список использованных источников
Приложение

Определение основных параметров скрепера
Исходные данные:
Марка трактора………………………………………………….. Т-220
Масса, кг………………………..………………………………….20700
Номинальная мощность двигателя, кВт…………………….......161,5
Частота вращения, с…………………………………………….....25
Габаритные размеры, мм
длина……………………………………………………………….5500
ширина……………………………………………………………….2850
высота……………………………………………………………….2900
колея………………………………………………………………….2200
Ширина резания, мм……………………………………………….2950

Заключение
В ходе данной курсовой работы я рассмотрел землеройно-транспортную машину скрепер, ознакомился с его назначением и классификацией.
В работе были определены следующие параметры скрепера:
- геометрические размеры ковша (;
- геометрическая емкость коша;
- масса скрепера;
- сопротивление резанию грунта;
- эксплуатационная производительность.
Полученные значения приведены в таблице:
Ширина ковша ,мм............ 3030
Высота ковша ,мм............ 1515
Длина ковша ,мм............ 2424
Геометрическая емкость ковша, м3..... 9,2
Масса скрепера, т...... 12
Сопротивление перемещению груженого скрепера, Н...... 117600
Сопротивление грунта резанию, Н....... 11800
Сопротивление наполнение ковша, Н....... 36000
Сопротивление перемещению призмы волочения, Н....... 49176
Эксплуатационная производительность скрепера, м3/мин...... 66,2
Также построены регуляторная и динамическая характеристики базового трактора на основе соответствующих расчетов.
В графической части данной курсовой работы представлены следующие чертежи: общий вид скрепера с гусеничным трактором, тяговая характеристика трактора Т-220, общие виды скрепера и модернизированного скрепера.
Дата добавления: 08.04.2013
РП 3. АР Завод (комплекс 4 производств) | AutoCad


АБК
Площадь застройки м2 1202.2
Общая площадь м2 3964.3
Расчетная площадь м2 1900.5
Полезная площадь м2 2685.2
Строительный объем, в т.ч.: м3 14710.3
надземной части м3 12071.9
подземной части м3 2638.4
ПК
Площадь застройки м2 4337.3
Общая площадь м2 5294.3
Расчетная площадь м2 3235.9
Полезная площадь м2 4049.3
Строительный объем м3 67713.3
ПЕРЕХОДНАЯ ГАЛЕРЕЯ
Площадь застройки м2 257.3
Общая площадь м2 223.9
Расчетная площадь м2 78.8
Полезная площадь м2 214.0
Строительный объем м3 1040.6


Проектируемое здание НПК состоит из административно-бытового корпуса и промышленного корпуса, соединенных переходной галереей.
Административно-бытовой корпус представляет собой прямоугольное в плане 3-этажное здание, с габаритными размерами в плане 42,77х24,77 и высотой в парапете 12,87 м. За отметку 0.000 взят уровень чистого пола ПК. Относительная отметка уровня чистого пола первого этажа АБК равна + 0.860.
Проектируемый корпус АБК функционально разделен на следующие основные зоны:
1. Гардеробы, раздевалки с душевыми кабинами для работников предприятия.
2. Офисные помещения.
3. Медпункт.
4. Вспомогательные и технические помещения:
- входная группа (тамбур, вестибюль, охрана);
- сан. узлы;
- группа технических помещений (водомерный узел, электрощитовая, серверная, венткамеры).
В проектируемом административно-бытовом корпусе расположены две эвакуационные лестницы. Лестничные клетки выделены противопожарными кирпичными стенами толщиной 250 мм. В осях Д-Е по оси 8 в уровне первого этажа расположен выход в переходную галерею, ведущую в производственный корпус.
Технические помещения ограничены противопожарными кирпичными перегородками 120 мм. Офисные помещения выделены перегородками с двухслойной обшивкой из гипсокартонных КНАУФ-листов на одинарном металлическом каркасе С 112
На первом этаже АБК (отм. +0.860) располагаются: вестибюль с ресепшн, бюро пропусков, помещение охраны, гардеробные, переговорные, гардеробные и душевые для рабочих, медпункт, офисы и лаборатории для сотрудников отдела наноматериалов и гибридных композитов №316, технические помещения.
На втором этаже АБК (отм. +4.460) расположены: гардеробные и душевые для рабочих, офисы сотрудников, переговорные, комната приема пищи и комната отдыха.
На третьем этаже АБК (отм. +8.060) находятся офисы сотрудников, руководства НПК, переговорные, комната приема пищи и комната отдыха, венткамеры.
На каждом этаже предусмотрены сан. узлы для персонала.
Здание имеет плоскую кровлю, оборудованную внутренними водостоками. Доступ на кровлю осуществляется через лестничную клетку в осях 7, 8.

ПК представляет собой прямоугольное в плане разновысотное здание, с габаритными размерами в плане 114,70 х 38,00 и высотами в парапете 4,76 м (минимальная) и 23,21 м (максимальная). Относительная отметка 0.000 уровня чистого пола ПК соответствует абсолютной отметке +36.650 в Балтийской системе высот.
ПК разделен на 4 объема (производств разного типа и назначения):
1. Гальванический комплекс.
2. Сталеплавильное производство.
3. Лаборатория наноматериалов и гибридных композитов.
4. Отдел ротационной вытяжки и штамповки (штамповочное производство).
Гальванический комплекс расположен в 2 уровнях: участок подготовки и хранения растворов и вспомогательные помещения на отм. 0.000 и участок нанесения покрытий на антресоли на отм. +6.000.
Остальные три производственных участка запроектированы одноэтажными.
Доступ персонала из АБК к производственным участкам осуществляется по общему центральному коридору в осях Д, Е.
На каждом участке предусмотрены санузлы для сотрудников, кладовые уборочного инвентаря, помещения для охлаждения (кроме гальванического комплекса № 135), складские помещения и венткамеры.
Из каждого производственного участка предусмотрены как минимум два эвакуационных выхода наружу. Эвакуация со второго уровня антресолей гальванического комплекса осуществляется на эвакуационную лестницу по оси 31, наружную металлическую лестницу в осях 27-28. Здание имеет скатную кровлю, оборудованную внутренними водостоками. Доступ на кровлю осуществляется по наружной металлической лестнице типа П2 в осях 27-28, а также по наружным металлическим пожарным лестницам типа П1.


Общие данные
План подвала АБК. Фрагмент плана подвала на отметке +0.200
План первого этажа НПК на отм. 0.000
План АБК на отм. +4.500
План АБК на отм. +8.100
Фрагмент плана ПК на отм +6.000, +7.800, +9.500
План кровли
Разрез 1-1
Разрез 2-2
Разрез 3-3
Разрез 4-4
Разрез 5-5
Разрез 6-6
Разрез 7-7
Фасад в осях 1-31
Фасад в осях 31-1
Фасад в осях А-Н
Фасад в осях Н-А



Дата добавления: 12.11.2015
РП 4. ИОС (ВК, НВК) Реконструкция АЗС Чувашская Республика | AutoCad

Задачей настоящего раздела проекта является:
- хозяйственно-питьевые нужды в здании операторной.
Питьевая вода на автозаправочной станции требуется для здания с постоянным пребыванием людей. Для обеспечения здания операторной хозяйственно-питьевой водой, предусмотрена врезка во внешний водопровод d=63мм. ПНД (См.раздел 2075-ИОС 2.2 «Внеплощадочные сети водоснабжения»).
Качество воды соответствует требованиям ГОСТ Р 51232–98 «Вода питьевая. Общие требования к организации и методам контроля качества»
Пожаротушение АЗС осуществляется передвижной пожарной техникой от проектируемых двух пожарных резервуара объемом по 50 м3 каждый (п.22,23 согласно ПЗУ) , забор воды предусмотрен из горловины резервуара.
Заполнение резервуаров предусмотрено от автоцистерны привозной водой.
Дополнительно на островках ТРК (топливнораздаточная колонка)размещаются :
На каждом островке ТРК п.4 (согласно ПЗУ), устанавливается:
- воздушно-пенный огнетушитель вместимостью 10 литров- 1 шт.(ОВП-10)
- огнетушитель порошковый вместимостью 5 литров – 1 шт. (ОП-5)
На островке ТРК п.5 (согласно ПЗУ), устанавливается:
- Огнетушитель передвижной порошковый V=50 литров-2 шт.(ОП-50)
На площадке АЦ ЖМТ(авто-цистерны жидко-моторного топлива) ,устанавливается:- Огнетушитель передвижной порошковый V=50 литров-2 шт.(ОП-50)
Возле площадки АЦ и площадки ТБО предусматривается ящик с песком с размерами 1470х680х645.

Размещение огнетушителей должно предусматриваться на заправочных островках в легкодоступных местах, защищенных от атмосферных осадков.


ИОС 2.2
Задачей настоящего раздела проекта является:
- обеспечение хозяйственно-питьевых нужд в здании операторной;
- пожаротушение площадки АЗС.

Проектируемое здание операторной расположено в Чувашской Республике, Чебоксарского р-н, с. Ишлеи. Cогласно тех.условиям источником водоснабжения, является внешний водопровод “ВНБ №3 с.Ишлеи” (согласно топосъемки ∅ 63 мм. ПНД) (см. 2075 - ИОС 2.2.ГЧ лист 1).
Врезка в существующий водопровод предусмотрена через электросварную седелку седелку ∅ 63х50 в проектируемом колодце В 3.1.1 ∅1000 мм. Проектируемый водопровод из ПЭ 100 SDR 13,6 ∅50 по ГОСТ 18599-2001 выполнен в подземном исполнении и защищен на всем своем протяжении до здания операторной(поз.1 согласно ПЗУ) стальным футляре ∅273х8,0. Глубина заложения всем протяжении от 1,80-2,20 м.
Также согласно тех.условиям для обеспечения бесперебойного водоснабжения АЗС запроектированы следующие элементы и сооружения водопроводного хозяйства:
- запроектирован участок трубы из ПЭ 100 SDR 13,6 ∅110 по ГОСТ 18599-2001 от проектируемого колодца колодца В 3.1.2 ∅1500 мм до существующего колодца В 3.1.
- врезка в существующий водопровод выполнена (согласно топосъемки ∅ 118 мм. чугун) с помощью фланцевой седелки в в проектируемом колодце. Прокол под дорогой выполнен в стальном футляре ∅325х8,0. Глубина заложения на всем протяжении от 1,80-2,69 м.

Перед началом строительных работ, во время хода строительства и перед засыпкой наружных сетей водопровода вызвать предствателя МУП ЖКХ “Ишлейское”. Производство земляных работ в местах пересечения с существующими инженерными сетями (сети связи, газопровод) выполнять в присутствии представителей собственников данных сетей и при необходимости других заинтересованных лиц.


ИОС 3
Задачей настоящего раздела проекта является:
- очистка и сбор дождевых стоков.
- сбор и утилизация бытовых стоков

Проектируемое здание операторной расположено в Чувашской Республике, Чебоксарского р-н, с. Ишлеи. Образующиеся стоки от сан. технических приборов отводятся в существующий выгреб, по мере наполнения которого, вывозятся ассенизаторской машиной.
Предусматривается отвод ливневых стоков, с последующей очисткой.
Атмосферные осадки проходят очистку на установке по улавливанию взвешенных веществ и нефтепродуктов Блик 2К.

ПРОЕКТ ПРОШЕЛ ЭКСПЕРТИЗУ.
Дата добавления: 20.06.2017
КП 5. Курсовой проект - 9 - ти этажный жилой дом со встроенными офисными помещениями 18,99 х 31,86 м в г. Липецк | АutoCad

1. Исходные данные для проектирования
2. Объемно-планировочное решение
3. Конструктивные решения
3.2. Конструктивный тип здания
3.3. Краткое описание запроектированных конструкций
3.2.1.Фундаменты
3.2.2.Наружные стены
3.2.3.Внутренние стены
3.2.4.Перегородки
3.2.5.Перекрытия и полы
3.2.6.Покрытия
3.2.7. Окна и двери
3.2.8. Лестницы и пандусы
3.2.9. Балконы
3.2.10. Наружная и внутренняя отделка
4. Расчетная часть
4.1.Теплотехнический расчет наружной стены
4.2.Теплотехнический расчет остекления
4.3.Теплотехнический расчет чердачного перекрытия.
5. Инженерное и санитарно-техническое оборудование
6. Технико-экономические показатели по зданию
7. Список литературы
8. Приложение 
 


Высота подвала: 1,7 м
Высота чердака: 1,95 м
Привязка внутренних несущих стен: симметричная 190х190 мм, 60*60 мм.
Несущие стены: поперечные. Привязка наружных несущих стен – 200 мм.
Привязка наружных самонесущих стен: нулевая.
2-9 этажи – жилые помещения. На каждом этаже расположены две трехкомнатные и четыре двухкомнатные квартиры.
В каждой квартире имеется балкон.
Жилой дом оборудован пассажирским лифтом грузоподъёмностью 630 кг.
Мусороудаление осуществляется с помощью мусоропровода.
Мусоросборная камера располагается под лестничной клеткой непосредственно под стволом мусоропровода. Размеры камеры 1500х2000 мм.
Эвакуация с 1 этажа – 1 вход с торца здания.
Эвакуация с жилой части здания – по лестнице, расположенная в лестничной клетке.
1 этаж – офисные помещения. Вместимость офисных помещений Предусмотрен подъемник на входе и санузел для маломобильных групп населения.

Конструктивная система- стеновая
Конструктивная схема: с поперечными несущими стенами.
Тип фундамента – ленточный сборный по блокам ФБС, устроен под несущими и самонесущими стенами. Материал – железобетон. Глубина заложения фундамента – 2 м, так как на площадке песчаные грунты. Подушка фундамента высотой 300 мм, блоки высотой 600 мм.
Наружные стены выполнены с утеплением внутри кладки. Основной материал наружных стен – кирпич силикатный на цементно-песчаном растворе плотностью γ = 1800 кг/м3. Утеплитель – плиты URSA γ = 85 кг/м3. Наружная отделка – штукатурка цементно-песчаным раствором. Толщина стены 760 мм принята на основании теплотехнического расчета.
Наружные стены выполнены с утеплением внутри кладки. Основной материал наружных стен – кирпич силикатный на цементно-песчаном растворе плотностью γ = 1800 кг/м3. Утеплитель – плиты URSA γ = 85 кг/м3. Наружная отделка – штукатурка цементно-песчаным раствором. Толщина стены 760 мм принята на основании теплотехнического расчета.
Перегородки из силикатного кирпича толщиной 120 мм, межквартирные – газобетонный блоки, толщиной 190 мм. Перегородки устанавливаются на плиты перекрытий и крепятся к перекрытиям и стенам для обеспечения устойчивости.
По своему конструктивному решению тип перекрытия – железобетонные многопустотные плиты толщиной 220 мм, опирающиеся на стены по двум сторонам на 120 мм и анкерующиеся между собой и к кладке стен.
По своему конструктивному решению тип перекрытия – железобетонные многопустотные плиты толщиной 220 мм, опирающиеся на стены по двум сторонам на 120 мм и анкерующиеся между собой и к кладке стен.

Техникоэкономические показатели по зданию:



Дата добавления: 16.05.2018

КП 6. Курсовой проект - 9 - ти этажный жилой дом со встроенными офисными помещениями 21,62 х 13,88 м в г. Архангельск | AutoCad

1. Исходные данные для проектирования 3
2. Объёмно-планировочное решение 4
3. Конструктивные решения 5
3.1 Конструктивный тип здания: 5
3.2 Фундамент 5
3.3 Наружные стены 5
3.4 Внутренние стены и перегородки 5
3.5 Перекрытия и полы 6
3.6 Покрытия: 6
3.7 Окна и двери: 6
3.8 Перемычки 6
3.9 Лестницы и пандусы 6
3.10 Балконы: 7
3.11 Наружная и внутренняя отделка: 7
4. Расчётная часть 8
4.1 Теплотехнический расчёт толщины утеплителя в наружных стенах 8
4.2 Теплотехнический расчёт окон 12
4.3 Теплотехнический расчёт толщины утеплителя в чердачном перекрытии 13
5. Инженерное и сантехническое оборудование 15
6. Список литературы 16
Приложение 17

На типовом этаже располагаются 1 однокомнатная квартира общей площадью 34,11 кв. м., 2 двухкомнатные квартиры общей площадью 46,25 кв. м. и 59,80 кв. м. и 1 трёхкомнатная квартира общей площадью 65,16 кв. м. Каждая квартира имеет балкон площадью 2,23 кв. м.
Наружные несущие стены выполнены с привязкой 200, самонесущие – с «нулевой»; внутренние – с «симметричной» привязкой. Толщина наружных стен принята по теплотехническому расчёту и составляет 770 мм, внутренних – 380 мм, т. к. в них располагаются вентканалы.
В здании предусмотрен подвал для прокладки инженерных коммуникаций высотой 2,0 м и холодный чердак высотой 2,135 м.
На первом этаже предусмотрен вход с торца здания, отдельный вход в жилую часть и в мусоросборную камеру. Кроме того, в здании устроен лифт грузоподъёмностью 630 кг и мусоропровод. Тамбур в жилой части одинарный длиной 2,120 м и шириной 1,5 м, в административной – также одинарный длиной 2,740 м и шириной 1,920 м.
На первом этаже располагается проектное бюро вместимостью 10 человек (Общая площадь = 210,8 кв.м). Экспликация помещений приведена на листе 1 графической части. В соответствии со СП 59.13330.2012 предусмотрены мероприятия для маломобильных групп населения, такие как устройство пандуса снаружи с уклоном 1:20; санузел шириной 1,9 м и длиной 2,4 м; коридоры шириной не менее 1,5 м.
В здании предусмотрен выход на кровлю из лестничной клетки. Высота выходов в свету не менее 2,1 м, ширина – не менее 0,8 м, двери открываются по направлению выхода из здания. Размеры лестничной клетки – 6.0*2.2 м. На лестничных клетках присутствует естественное освещение. Ширина коридоров и лестничных площадок не менее 1,5 м, ширина лестничных маршей – 1,05 м.

Конструктивная система- стеновая
Конструктивная схема: с поперечными несущими стенами.
Тип фундамента – ленточный сборный
Наружные стены - трёхслойные из кирпича силикатного на цементно-песчаном растворе (γ = 1500 кг/м3)с утеплением внутри кладки δстены = 510 мм, δутеплителя = 120 мм принята по теплотехническому расчёту (в качестве утеплителя используется Пенополистирол Экструдированный «Пеноплекс», (γ0=35 кг/м3)), облицовочный слой – кирпич силикатный на цементно-песчаном растворе δоблицовки = 120 мм. Наружная отделка – штукатурка цементно-песчаным раствором. Толщина стены δстены = 770 мм.
Внутренние несущие и самонесущие стены выполнены из кирпича силикатного на цементно-песчаном растворе, толщина кладки – 380 мм (межквартирные перегородки). Перегородки межкомнатные выполнены из гипсобетона δперегородок = 100 мм.
По своему конструктивному решению тип перекрытия – железобетонные многопустотные плиты толщиной 220 мм, опирающиеся на стены по двум сторонам на 120 мм и анкерующиеся между собой и к кладке стен. В помещениях лестнично-лифтовых узлов полы – монолитные бетонные.
Покрытие – чердачное, с холодным чердаком. Покрытие – железобетонные плиты толщиной 220 мм. Уклон i=0,025 осуществляется ц/п стяжкой.

Технико-экономические показатели по зданию



Дата добавления: 12.11.2018

РП 7. ЭОМ Производственное здание в Московской области | AutoCad

Здание по степени обеспечения надежности электроснабжения относится ко II категории электроснабжения в соответствии с таблицей 5.1 СП31-110-2003.
Основными потребителями электроэнергии являются:
- сети освещения;
- системы вентиляции;
- электрооборудование:
а) персональные компьютеры;
б) технологическое оборудование;
в) слаботочные системы.

Для электроснабжения потребителей запроектирована электрощитовая на отм.±0,000. В качестве вводных панелей приняты вводные панели по типу 3ВП-5-63-0-31 с габаритами 2000х630х450мм IP31, в качестве распределительной панели принята панель по типу 3РП-107-31 с двумя независимыми шинами с габаритами 2000х630х450 мм IP31.
Учет расхода электроэнергии, расходуемой осветительными и силовыми электроприемниками помещений осуществляется счетчиками Меркурий 234ART M-03 PB.G, 5(7,5)А классом точности 0,5, устанавливаемыми отсеках учета панелей которые имеют устройства для опломбирования.
Групповые силовые и осветительные щиты приняты навесного исполнения IP31 и IP41, щиты устанавливаются в нишах специально предусмотренных для размещения электротехнического оборудования на всех этажах и по мечту в соответствии с планами распределительных сетей. Для электроснабжения потребителей I категории надежности запроектировано АВР на основе двух панелей габаритами 1800х1000х600мм IP54 и распределительной панели 3Р-207-31 располагающиеся в электрощитовой, АВР имеет отдельный учет смонтированный в отсеке для учета имеющим устройство для опломбирования, на базе микропроцессорного счетчика Меркурий 234ART M-03 PB.G, 5(7,5)А. Питание потребителей I категории осуществляется 2-мя независимыми линиями от ТП и 3-й независимый ввод предусмотрен от ДГУ на 550кВт АД-500С-Т400-1РМ5.
Щитки в соответствии с ГОСТ Р 51732-2001 выполняются со степенью защиты IP31. В помещениях, относящихся к пожароопасным, все оборудование выбрано согласно ПУЭ, п.7.3,п.7.4; СНиП31.06-2009.

Основные показатели проекта по ВРУ:
Напряжение питания ~ 0,4 кВ.
Расчетная мощность 473,0кВт
cosφ 0,94
Расчетный ток 764,0А
Основные показатели проекта по АВР:
Напряжение питания ~ 0,4 кВ.
Расчетная мощность 497,1кВт
cosφ 0,94
Расчетный ток 804,0А
при пожаре:
Расчетная мощность 514,67кВт
cosφ 0,94
Расчетный ток 832,0А
Дата добавления: 25.02.2019
КП 8. Курсовой проект - Технологическое проектирование эксплуатационного предприятия | Компас

Введение
1. Содержание и методика выполнения основных разделов 8
1.1 Планирование технического обслуживания и ремонта машин 8
1.1.1 Исходные данные 8
1.1.2 Корректировка нормативов периодичности, трудоёмкости и продолжительности ТО и ремонта машин 8
1.1.3 Определение коэффициента технического использования и плановой годовой наработки машин  10
1.1.4 Расчёт производственной программы по ТО и ремонту машин 11
1.1.5 Определение годового объёма работ эксплуатационного предприятия 14
1.1.6. Распределение трудоемкости работ по ТО и ремонту машин и самообслуживанию предприятия 18
1.1.7. Режимы производства и расчет фондов рабочего времени 21
1.1.8. Расчет численности производственных и вспомогательных рабочих, ИТР, служащих и обслуживающего персонала 23
1.1.9. Расчет количества постов ТО и ремонта машин 25
1.1.10 Определение потребности в передвижных средствах технического обслуживания и ремонта машин 26
2. Расчет производственных площадей 27
2.1. Определение площадей зон ТО и ремонта машин 27
2.2. Определение площадей производственных отделений 28
2.3. Расчет площадей складских помещений 29
2.4. Расчет площадей стоянок машин 30
Заключение 31
Список используемых источников 32

Исходные данные
Основные исходные данные, необходимые для планирования технического обслуживания и ремонта следующие:
Парк машин:
Экскаваторы ЭО 3322Б – 10шт.;
Погрузчики одноковшовые ТО-18;
Режим работы: 9 месяцев в году, 1 смена;
Режим работы технической службы: 12 мес. в 1 смену;
Коэффициент использования: Кисп = 0,8 для экскаватора и 0,85 для погрузчика;
Планировочное решение: зона ТО.

Нормативы





























































В результате расчетов было получено:
– Объём работ для всего парка машин эксплуатационного предприятия 47438,1 чел-ч;
– Номинальный годовой фонд времени рабочего 2070 ч;
– Действительный годовой фонд времени рабочего 1860 ч;
– Эффективный годовой фонд рабочего времени оборудования 2070 ч;
– Эффективный годовой фонд рабочего времени рабочих постов 2070ч;
– Количество постов зоны ТО П = 2;
– Количество постов зоны ТР П = 6;
– Площадь зоны ТО 375 м2;
– Площади стоянок 666 м2;
Дата добавления: 07.05.2019
КП 9. Курсовой проект - Расчет ректификационной установки для разделения смеси бензол - толуол | Компас


Содержание
Введение 3
1. Технологическая схема ректификационной установки 5
2. Технологический расчет 7
2.1. Материальный баланс 7
2.2. Количество орошения и число теоретических тарелок 8
2.3. Материальные потоки 9
2.4. Тепловой расчет установки 11
3. Гидравлический расчет аппарата 13
3.1. Определение диаметра колонны 13
3.2. Расчет высоты сливного порога 15
3.3. Гидравлическое сопротивление тарелок 16
3.4. Расчет диаметров штуцеров колонны 18
4. Число реальных тарелок и высота колонны 19
5. Расчет теплообменных аппаратов 21
5.1. Расчет дефлегматора 21
5.2. Кипятильник 24
5.3. Холодильник дистиллята 27
5.4. Холодильник кубового остатка 28
5.5. Подогреватель исходной смеси 29
6. Определение толщины слоя термоизоляции аппарата 30
7. Расчет толщины стенки корпуса колонного аппарата 32
Заключение 33
Список использованной литературы 34

Техническая характеристика
1. Аппарат предназначен для разделения смеси бензол - толуол.
2. Производительность по исходной смеси- 10 т/ч.
3. Содержание легколетучего компонента:
а) в исходной смеси-37% (масс.)
б) в верхнем продукте (дистиляторе)-97,5% (масс.)
в) в нижгнем продукте (кубовом остатке)-1,8%(масс.)
4. Тип колоны-тарельчатая.
5. Тип тарелок-клапанные.
6. Число тарелок-22.
7. Температура в дефлегматоре 23 С.
8. Давление в колонне-0,101 МПа.

Заключение
В курсовом проекте рассчитана и спроектирована установка непрерывного действия для разделения бинарной меси бензол – толуол .
Диаметр колонны составляет 2000 мм, колонна цельносварная со съёмной крышкой и разборными тарелками, выполнена из стали 08Х18Н10Т. Тип колонных элементов – клапанная тарелка ТКП. Число тарелок внизу колонны – 12 шт, вверху – 10 шт, расстояние между тарелками НТ = 500 мм.
Рассчитано и подобрано вспомогательное оборудование:
- дефлегматор АВГ (9-Ж-6-М1-НВЗ)/(4-1-4) ГОСТ 20764-79;
- кипятильник 1200 ИН-2-6-6-М1-0/3 гр. Б, ГОСТ 15119-79;
- холодильник дистиллята 630ХНГ-6-6-М1-0/25-6-2 гр. Б, ГОСТ 15120-79.
- холодильник кубового остатка 800ХНГ-6-6-М1-0/25-6-2 гр. Б, ГОСТ 15120-79.
- подогреватель исходной смеси 600ТКГ-6-М1-0/25-2-4 гр. Б, ГОСТ 15122-79.
 
Дата добавления: 24.05.2019
КП 10. Курсовой проект - Фундамент химического корпуса 54 х 30 м на естественном основании | AutoCad

1. Исходные данные
2. Фундаменты мелкого заложения
2.1. Анализ исходных данных по надфундаментной конструкции
2.2 Привязка здания на площадке строительства
2.3 Анализ инженерно-геологических и гидрогеологических условий площадки строительства
2.3.1 Определение типа грунта и его характеристик
2.3.2 Построение инженерно-геологического разреза
2.4 Определение глубины заложения фундамента мелкого заложения
2.5 Определение размеров подошвы фундамента мелкого заложения методом последовательного приближения
2.6 Конструирование фундамента мелкого заложения
2.7 Расчет осадок для фундамента мелкого заложения методом послойного суммирования
3. Свайные фундаменты
3.2 Определение несущей способности сваи
3.2.1 Определение длины сваи
3.2.2 Определение несущей способности одиночной сваи по грунту
3.2.3 Конструирование ростверка и определение расчетной нагрузки на сваю
3.3 Расчет осадок свайного фундамента
3.3.1 Расчет осадки одиночной сваи
Список литературы

Здание каркасное с несущими железобетонными колоннами.
1) высота сооружения в осях А - В = 25,00 м.
2) высота сооружения в осях В - С =33,4 м.
3)высота сооружения в осях С-Е =12,5 м.
Фундаменты:
а) здания – отдельный под колонну.
Здание чувствительно к неравномерным осадкам.

Физико-механические характеристики грунтов.



Дата добавления: 12.06.2019









КП 11. Курсовой проект - Проектирование городской улицы в г. Белгород | АutoCad

ВВЕДЕНИЕ 2
1 Общая характеристика района проектирования дороги 3
1.1 Климатические характеристика района проектирования 3
1.2 Рельеф местности 5
2 Обоснование технических нормативов проектируемой автомобильной дороги 5
3 Определение технических характеристик проектируемых улиц 7
4 Проектирование поперечных профилей основной и пересекаемой улиц, определении ширины улиц в "красных линиях" 13
5 Проектирование плана и продольного профиля основной и пересекаемой улиц 14
5.1 Проектирование плана улиц 14
5.2 Проектирование продольного профиля улиц 15
6 Разработка вертикальной планировки пересечения 17
7 Определение объёмов земляных работ на перекрёстке методом "картограмм" 19
8 Назначение конструкции дорожной одежды 24
ЗАКЛЮЧЕНИЕ 35
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ 36

Исходные данные для проектирования
1. Топографический план участка города в горизонталях с планом улично-дорожной сети в масштабе 1:10 000 (приложение 1).
2. Район проектирование – г. Белгород, Белгородская область.
3. Данные о грунтовых условиях:




6. Основная улица Прохладная.
7. Пересекаемая улица Ненастная.
8. Состав транспортного потока и интенсивность движения:








10. Интенсивность движения пешеходов 3,0 тыс. чел/ч.
11. Инженерные сети: водопровод, теплоснабжение, кабели (слаботочные, сильных токов, осветительные).
12. Тип покрытия дорожной одежды проезжей части проектируемой улицы монолитный цементобетон.

ЗАКЛЮЧЕНИЕ
В данной курсовой работе на тему «Проектирование городской улицы» была запроектирована магистральная улица непрерывного движения.
Был выбран оптимальное размещение автомобильной дороги исходя безопасности движения и экономического соображения, запроектирована вертикальная планировка и выполнен расчет объема земляного полотна методом картограмм. Была подобрана конструкция жесткой дорожной одежды с учетом сроком службы на 25 лет.
Дата добавления: 17.06.2019
КП 12. Курсовой проект - Проектирование районной понизительной подстанции 220/35/10 кВ | Компас

Введение 6
1 Обработка графиков нагрузок 7
2 Выбор числа и мощности силовых трансформаторов 12
3 Расчет токов короткого замыкания 15
4 Выбор главной схемы соединений ППС 18
5 Выбор измерительных трансформаторов 26
5.1 Выбор измерительных трансформаторов тока 26
5.2 Выбор измерительных трансформаторов напряжения 29
5.3 Выбор предохранителей в цепи трансформатора напряжения 31
6 Выбор и проверка токоведущих частей в схемах РУ подстанций 33
6.1.1 Выбор токоведущих частей на стороне 220 кВ 33
6.1.2 Выбор сборной шины 220 кВ 34
6.2.1 Выбор сборной шины 10 кВ 35
6.2.2 Выбор провода на отходящих линиях 10 кВ 37
6.3.1 Выбор токоведущих частей на стороне 35 кВ 37
6.3.2 Выбор сборной шины 35 кВ 38
6.3.3 Выбор провода на отходящих линиях 35 кВ 40
7 Выбор защитного и изоляционного оборудования 41
7.1 Выбор опорных изоляторов 41
7.2 Выбор проходных изоляторов 42
8 Выбор трансформаторов собственных нужд 44
Заключение 47
Список используемых источников 50

Целью данного курсового проекта является Проектирование понизительной подстанции 220/35/10 кВ .
Каждая локальная сеть должна отвечать таким же требованиям, каким отвечает вся электроэнергетическая система. Основными требованиями являются надежность, экономичность, безопасность, удобство эксплуатации, обеспечение надлежащего качества электроэнергии, установленных в ГОСТ 13109-97, и возможность дальнейшего развития.
В ходе курсового проекта необходимо рассчитать данные для суточных и годовых графиков нагрузок на стороне 35 кВ и 10 кВ, затем построить годовые графики нагрузок. Далее на основании заданной максимальной мощности выбрать трансформаторы, для которых нужно произвести все необходимые расчеты для проверки ( напряжения к.з., реактивные мощности к.з., потери на трансформаторе и коэффициент загрузки). Затем построить схему замещения, упростить ее и на ее основании посчитать токи короткого замыкания. Далее необходимо выбрать и построить главную схему соединений ППС, для которой производится выбор коммутационного оборудования. Потом выбрать и рассчитать аппаратуру, токоведущие части и защитное и изоляционное оборудование. В заключении выбрать трансформатор собственных нужд.
 


Было получено задание - спроектировать районную понизительную подстанцию 220/35/10 кВ, которая будет отвечать всем параметрам качества электропередачи, установленным в ГОСТ 13109-97. В ходе выполнения по-ставленной задачи были рассчитаны и построены годовые графики электрических нагрузок на среднем и низшем напряжении. Затем был произведен расчет данных для выбора силового трансформатора. Был выбран силовой трансформатор ТДТН 25000/220, для которого были рассчитаны напряжения короткого замыкания, реактивная и активные мощности короткого замыкания, на каждой из сторон обмоток, коэффициент загрузки и потери на трансформаторе, согласно которым, выбранный трансформатор подошел для установки в РПП 220/35/10 кВ.
Далее производился выбор главной схемы электрических соединений подстанции. Была создана и в последствии упрощена схема замещения для расчетов токов короткого замыкания, для которой были произведены рас-четы ЭДС и реактивных сопротивлений на всех сторонах обмоток. Затем были рассчитаны: базисные токи, токи короткого замыкания и ударные то-ки на каждой из сторон обмоток.
Были произведены расчеты рабочих токов, максимальных рабочих токов и тепловых импульсов на всех сторонах обмоток, затем была состав-лена схема электрических соединений для подстанции типа 220-4H ( Два блока с выключателями и неавтоматической перемычкой со стороны линий ), для которой были выбраны и проверены: выключатели (ВГТ-220 на ли-нии 220 кВ, ВГБЭ-35/УХЛ1 на линии 35 кВ, ВВУ-10-26/1600 на линии 10 кВ, ВВ/TEL-35-12,5/630УХЛ1 на фидерах 35 кВ, ВВ/TEL-35-12,5/630УХЛ1 на фидерах 10 кВ), разъединители (РНДЗ-1-220/1000УХЛ1 на напряжении 220 кВ, РНДЗ.1-35I/1000УХЛ на напряжении 35 кВ, РВЗ-10/2500 на напря-жение 10 кВ), нелинейные ограничители перенапряжений (ОПН-220/176/10/550 на линии 220 кВ, ОПН/TEL-35/40,5УХЛ1 на фидерах 35 кВ, ОПН/TEL 10/10,5УХЛ1 на фидерах 10 кВ).
Для преобразования значений тока и напряжения, пригодных для из-мерения были выбраны и проверены на электродинамическую и термиче-скую стойкость трансформаторы тока (ТФМЗ-220Б-3У1 на линии 220 кВ, ТОЛ-35-600 на линии и фидерах 35 кВ, ТОЛ-10 М2 на линии 10 кВ и ТПОЛ-10-600/5 на фидерах 10 кВ), трансформаторы напряжения (3НОГ-220-УХЛ на напряжение 220 кВ, 3НОМ-35-65У1 на линии и фидерах 35 кВ, НТМИ 10-66-У на линии и фидерах 10 кВ). Для защиты измерительных трансформаторов на стороне 10 и 35 кВ были выбраны (по номинальному напряжению установки, номинальному длительному току плавкой вставки и предельному отключаемому току) плавкие предохранители ПКТ 101-10-2-31,5У3 и ПКТ 101-35-2-8У1.
Далее был произведен выбор и проверка токоведущих частей в схе-мах распределительных устройств подстанции, согласно которого на сто-роне 220 кВ были выбраны: токоведущий кабель АС 240/32(по допусти-мой плотности тока), сборная шина из алюминиевых труб с наружным и внутренним диаметром равным 16/13 мм и допустимым длительным током 2070 А; На стороне 35 кВ были выбраны: жесткие шины из алюминиевых труб с наружным и внутренним диаметром равным 35/25 мм и допустимым током 640 А, кабели на отходящих линиях (по допустимой плотности тока) АС 400/22 и допустимым током 830 А; На стороне 10 кВ были выбраны: сборные алюминиевые однополосные шины 120 на 10 мм, с допустимым длительным током 2070 А, уложенные плашмя, т.к. это увеличивает длину пролета и дает экономию в количестве изоляторов, кабели на отходящих линиях марки АС 240/32 (по экономической плотности тока).
Были выбраны (по номинальному напряжению установки и допусти-мой нагрузке) опорные изоляторы ИО 35/3,75 на напряжение 35 кВ с минимальной разрушающей силой 3,75 кН, ИО -10/4 на напряжение 10 кВ с минимальной разрушающей силой 4 кН. Также были выбраны (по номинальному напряжению и току нагрузки и по допустимой нагрузке) проходные изоляторы ИП-35/400-7,5УХЛ2 с номинальным током 400 А и разрушающей силой 7,5 кН и ИП-10/630-7,5 с номинальным током 630 А и разрушающей силой 7,5 кН.
В заключении были выбраны два трансформатора собственных нужд ТМ-250-10/0,4У1 и плавкие предохранители ПКТ 101-10-20-31,5У3 с кварцевым наполнителем для гашения дуги в умеренном климате, для защиты электрооборудования системы ТСН.
Таким образом, спроектирована районная понизительная подстанция 220/35/10 кВ, отвечающая условиям нормального функционирования и со-ответствующая ГОСТ 13109-97.
Дата добавления: 25.09.2019
КП 13. Курсовой проект - Разработка системы отопления жилого дома в г. Томск | AutoCad

1. Исходные данные
2. Описание схемного решения системы отопления
3. Гидравлический расчет системы отопления
4. Подбор отопительных приборов
Библиографический список

Система поквартирного отопления здания присоединена к тепловым сетям по зависимой схеме с автоматическим регулированием параметров теплоносителя в ИТП.
Система отопления – двухтрубная, с нижней разводкой магистралей. Магистральные вертикальные стояки проложены на лестничных клетках. На каждом этаже предусмотрены монтажные шкафы, в которых размещаются распределительные поэтажные коллекторы с отводящими трубопроводами для каждой квартиры, запорная арматура, фильтры, балансировочные клапаны, приборы учета теплоты.
Трубы в пределах квартиры прокладываются в конструкции пола или в специальных плинтусах – коробах. Присоединение отопительных приборов – боковое одностороннее.
Для регулирования теплового потока в помещениях у отопительных приборов устанавливаются автоматические терморегуляторы, обеспечивающие поддержание заданной температуры в каждом помещении.
Отопительные приборы шахт лестничных клеток размещены на первом этаже, а на лестничных площадках (перед лифтами), разделенных на отсеки, — на каждом этаже. Отопительные приборы на лестничной клетке присоединять к отдельным стоякам систем отопления.

Расчетные параметры теплоносителя
Расчетная температура подающего теплоносителя tг = 85 0С;
Расчетная температура обратного теплоносителя tо = 65 0С;
Располагаемый перепад давлений в тепловой сети Рр , 50кПа

Расчетные тепловые нагрузки отапливаемых помещений:



Дата добавления: 22.02.2020



КП 14. Курсовой проект - Районная понизительная подстанция 35/10 кВ | Компас

ВВЕДЕНИЕ 9
1 КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ПРОЕКТИРОВАНИЯ 10
2 ОБРАБОТКА ГРАФИКОВ НАГРУЗКИ 12
3 ВЫБОР ЧИСЛА И МОЩНОСТИ СИЛОВЫХ ТРАНСФОРМАТОРОВ 16
4 ВЫБОР ГЛАВНОЙ СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ ПОДСТАНЦИИ 19
5 РАСЧЕТ КОРОТКОГО ЗАМЫКАНИЯ 21
5.1 Расчёт короткого замыкания на шинах 35 кВ 21
5.2 Расчёт короткого замыкания на шинах 10 кВ 27
6 ВЫБОР ОСНОВНОГО ЭЛЕКТРООБОРУДОВАНИЯ И ТОКОВЕДУЩИХ ЧАСТЕЙ 30
6.1 Выбор шин 30
6.1 Выбор сборных шин на низшем напряжении 30
6.2 Выбор гибких шин на высшем напряжении 32
6.3 Выбор высоковольтных выключателей 34
6.3.1 Выбор высоковольтных выключателей на высшем напряжении 34
6.3.2 Выбор высоковольтных выключателей на низшем напряжении 36
6.3.3 Выбор высоковольтных выключателей на отходящих фидерах 37
6.4 Выбор разъединителей 39
6.4.1 Выбор разъединителей на высшем напряжении 39
6.5 Выбор трансформаторов тока 40
6.5.1 Выбор трансформаторов тока встроенных в силовые трансформаторы 40
6.5.2 Выбор трансформатора тока, расположенного на РУ ВН 40
6.5.3 Выбор трансформаторов тока, расположенных на вводах 10 кВ 42
6.5.4 Выбор трансформаторов тока, расположенных рядом с секционными выключателями на сборных шинах низшего напряжения 45
6.5.5 Выбор трансформаторов тока, расположенных на отходящих линиях 47
6.6 Выбор трансформаторов напряжения 50
6.6.1 Выбор трансформаторов напряжения на стороне 10 кВ 50
6.7Выбор предохранителей 51
6.8 Выбор ограничителей перенапряжения 52
7 ВЫБОР РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ 54
7.1 Выбор релейной защиты 54
7.2 Автоматика подстанции 55
7.2.1 Автоматическое включение резервного питания и оборудования (АВР) 55
7.2.2 Автоматическое повторное включение (АПВ) на отходящих фидерах 57
8 ВЫБОР КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ 59
9 ВЫБОР ОПЕРАТИВНОГО ТОКА И ИСТОЧНИКОВ ПИТАНИЯ 60
10 СОБСТВЕННЫЕ НУЖДЫ ПОДСТАНЦИИ 61
11 РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ НА ПОДСТАНЦИИ 63
12 ВЫБОР КОНСТРУКЦИИ РАСПРЕДУСТРОЙСТВ 64
ЗАКЛЮЧЕНИЕ 65
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 66

Проектируемая понизительная подстанция 35/10кВ служит для преобразования и распределения электроэнергии. Так как среди числа потребителей электроэнергии подстанции есть I и II категории, то в цепях подстанции необходимо устанавливать два трансформатора.

Исходные данные генераторов:















МВт








Результатом данного курсового проекта является спроектированная электрическая часть районная понизительная подстанция для электроснабжения потребителей электрической энергией напряжением 35/10 кВ.
Спроектированная подстанция полностью отвечает техническим требованиям. На подстанции устанавливаются два трансформатора с расщепленной обмоткой ТРДНС мощностью 25 МВА каждый.
С целью обеспечение необходимой и достаточной надежности работы СЭС на подстанции предусмотрена главная схема электрических соединений, предельно снижающая вероятность отказов и перебоев в электроснабжении. Качество электроэнергии на подстанции обеспечивается: устройствами автоматического регулирования напряжения (РПН), установленными в силовых трансформаторах, что позволяет без отключения трансформаторов изменить напряжение в заданных пределам.
На подстанции установлены необходимые устройства релейной защиты и автоматики, что обеспечивает бесперебойное электроснабжение потребителей I категории.
Таким образом, был осуществлён проект районной понизительной подстанции, удовлетворяющий нормам современного проектирования.
Дата добавления: 28.04.2020
КП 15. Курсовой проект - Технологический процесс восстановления вилки кардана трактора ДТ-75 | Компас

Введение                                                                                                             4
1 КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИЙ АНАЛИЗ ВОССТАНАВЛИ-ВАЕМОЙ ДЕТАЛИ        5
1.1  Назначение детали и анализ технологического процесса его изготовления 5
1.2  Анализ условий работы детали в сопряжении, видов и процессов ее изнашивания             7
1.3  Анализ дефектов детали и возможных технологических способов восстановления   8
1.4  Выбор технологических баз для обработки                                                     9
1.5 Разработка ремонтного чертежа  детали                                                           10
2  РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ДЕТАЛИ        11
2.1 Выбор рационального способа восстановления детали                                 11
2.2 Разработка предварительного маршрута восстановления детали                 12
2.3 Выбор технологического оборудования, приспособлений, рабочего инструмента, средств контроля и измерений                                                                     12
2.4 Разработка маршрутной карты восстановления детали                                  13
2.5 Обоснование общих и операцион¬ных припусков и допусков на обработку 14
2.6 Расчет режимов и норм времени выполнения операций                                 15
2.7  Разработка операционных карт и операционных эскизов                              17
3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНО¬ВАНИЕ ТЕХ-НОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ДЕТАЛИ                                                       18
3.1 Расчет полной себестоимости восстановления детали                                    18
3.2 Определение основных технико-экономических показателей восстановления детали   19
Заключение                                                                                                                 20
Библиографический список                                                                                      


Для защиты подшипника кардана на наружную поверхность детали установлена манжета.  
В процессе эксплуатации деталь испытывает большие знакопеременные динамические нагрузки. Вся нагрузка передается через шлицевое соединение. 
По типу геометрической формы деталь относится к корпусным деталям. Вилка изготавливается из стали 35 ГОСТ 1050-2013. Заготовку полу-чают литьем в глинопесчаные формы.
Точность изготовления основных поверхностей детали:
- диаметр наружной поверхности должен быть – 70-0,2  мм;
- диаметр отверстия под болты должен быть – 26+0,084  мм;
- ширина шлицев на глубине 3 мм должна быть – 6,94+0,125…6,94+0,045 мм;
- ширина шлицев на глубине 0,5 мм должна быть – 4,05+0,21…6,94+0,09 мм.
- твердость НВ 207…241;
- чистота обрабатываемых поверхностей не менее Ra 6,3;
- чистота поверхностей под сальник не менее Ra 1,25.
Основные операции изготовления детали:
1. Литейная. Отливка детали. Оборудование – заливочный ковш, газовая вагранка. Инструмент – макет;
2. Токарная. Точить внешние и внутренние цилиндрические поверхности 1, 4, 5, 6, 8, 11, 14 (рисунок 2). Оборудование – станок токарно-винторезный 16К20;
3. Слесарная. Сверлить отверстия под крепежные болты 13 и снять фаску 12. Оборудование - вертикально-сверлильный станок 2Н118Э. Инструменты - сверла, зенкеры;
4. Токарная. Снять фаски 2, 3, 7, 9, 10. Оборудование – станок токарно-винторезный 16К20;
4. Зубофрезерная. Фрезеровать шлицы 14. Оборудование – станок зубофрезерный. Инструмент – фрезы для нарезания шлицев;
5. Контрольная. Контроль размеров. Оборудование - стол контролера. Инструмент - штангенциркуль ШЦ – 135 ГОСТ 166-89.


В процессе выполнения работы был разработан технологический процесс восстановления посадочной поверхности вилки кардана трактора ДТ-75 под сальник.  
Восстановление детали производим методом постановки дополнительной ремонтной детали. Ремонт деталей постановкой дополнительной ремонт-ной детали по сравнению с другими способами восстановления имеет низкую себестоимость. Данный способ может примениться для всех материалов. Для устранения дефекта необходимо обточить поверхность и напрессовать ранее подготовленную втулку. Преимуществом восстановления деталей постановкой ДРД является простота технологического процесса и применяемого оборудования, а также отсутствие термического воздействия на деталь. 
Но несмотря на это процесс имеет следующие недостатки:
- необходимость места для установки втулки из-за существенной толщины стенки втулки; 
- большой расход материала на изготовление дополнительной ремонтной детали;
- снижение механической прочности восстанавливаемой детали.
Дата добавления: 05.03.2021

На страницу 1 2

© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.